

# **Liquid Density Meter User Manual**



# sisco

# catalogue

- I. Overview 1
  - 1.1 Product snapshot 2
  - 1.2 Packing list 3
  - 1.3 Technical Parameters 3
- II. Installation and commissioning7
  - 2.1 Structure and function of the instrument 7
  - 2.2 Connecting the charger
- III. Quick use8
  - 3.1 Power on and use 8
  - 3.2. Measurement Method 9
  - 3.3 System Settings10
- IV. Instrument maintenance 10
  - 4.1. Instrument pipeline cleaning 10
  - 4.2 Cleaning of the instrument shell11
  - 4.3 Instrument inspection 11
  - 4.4 Instrument calibration11



#### 1. Overview

Thank you for choosing our self-developed handheld liquid densitometer. The instrument can quickly and accurately measure the density and temperature of liquids, with built-in alcohol, sugar, sulfuric acid, and plato concentration calculations, and allows users to create their own concentration calculation formulas.

The instrument uses a 2.4-inch color high-definition display, with an ergonomic grip structure for easy one-handed measurement operation. It has a large built-in memory that can store more than 1000 historical data points, and can import data to a USB flash drive or computer via USB. Connecting to a Bluetooth printer allows for instant wireless printing of measurement results. The instrument is equipped with scanning code and NFC functions, allowing for fast and accurate entry of sample ID information.

The contact area of the liquid sample is made of quartz glass and PTFE (polytetrafluoroethylene) materials, which increases the corrosion resistance of the equipment. The design of quick disassembly of the pump body facilitates equipment cleaning and pump body replacement.



# 1.1 Product Snapshot





# 1.2 Packing list

| Please inspect the case upon unpacking |          |  |
|----------------------------------------|----------|--|
| project                                | quantity |  |
| density meter host                     | 1        |  |
| Power adapter                          | 1        |  |
| USB-C cable                            | 1        |  |
| USB-OTG cable                          | 1        |  |
| polytetrafluoroethylene straw          | 2        |  |
| density calibration solution           | 3        |  |
| Fasten the PEEK joint 1/4-28 thread    | 1        |  |
| Inverted cone pressure ring            | 1        |  |
| (YC-2.5-ETFE)                          |          |  |
| Syringe adapter                        | 1        |  |
| instructions                           | 1        |  |
| Certificate of conformity              | 1        |  |
| Warranty Card                          | 1        |  |
| Bluetooth printer (optional)           | 1        |  |
| Thermal printing paper (optional)      | 2        |  |
| NFC smart label (optional)             | 10       |  |



# 1.3 Technical parameters

| Electrical parameters |                                                               |  |
|-----------------------|---------------------------------------------------------------|--|
| project               | parameter                                                     |  |
| External              | 150*57*271mm (depth * width * height)                         |  |
| dimensions            |                                                               |  |
| Host quality          | 350g                                                          |  |
| Power                 | 5V2A power adapter                                            |  |
| parameters            |                                                               |  |
| Built in battery      | 3.7V/3000mAH lithium-ion battery                              |  |
| display               | 2.4-inch full-color LCD screen with resolution of             |  |
|                       | 320x240                                                       |  |
| printer               | The machine is equipped with a wireless thermal               |  |
|                       | printer and uses a 55x30mm print paper roll                   |  |
| Data                  | USB, WIFI, Bluetooth, NFC                                     |  |
| communication         |                                                               |  |
| QR code               | Support barcode and QR code                                   |  |
| scanner               |                                                               |  |
| RFID card             | Support NFC card reading and writing function                 |  |
| storage               | 1000 pieces of historical data                                |  |
| Environmental         | Ambient temperature: $0^{\circ}\text{C}$ $50^{\circ}\text{C}$ |  |
| conditions for        | Environmental humidity: 0-80%RH                               |  |
| use                   | Altitude: for use below 2000 meters                           |  |
| Storage               | Temperature: 0- <b>4</b> 0 °C relative humidity:0-50%RH;      |  |
| environment           | charge the instrument once every six months.                  |  |



| Instrument material |                                                     |  |
|---------------------|-----------------------------------------------------|--|
| project             | parameter                                           |  |
| Shell               | ABS plastic                                         |  |
| Measurement         | quartz glass                                        |  |
| pool                |                                                     |  |
| Sampling pump       | Quartz glass + PTFE (polytetrafluoroethylene) + 304 |  |
| body                | stainless steel                                     |  |
| Pipette             | PTFE (polytetrafluoroethylene)                      |  |

| Technical parameters of the instrument measuring cell |  |  |
|-------------------------------------------------------|--|--|
| parameter                                             |  |  |
| Measuring range: 0.0000~3.0000 g/cm <sup>3</sup>      |  |  |
| Resolution: 0.0001 g/cm <sup>3</sup>                  |  |  |
| Accuracy: 0.001 g/cm <sup>3</sup>                     |  |  |
| Repeatability: 0.0005 g/cm <sup>3</sup>               |  |  |
| Measuring range: 0.0~50.0° C                          |  |  |
| Resolution: 0.1° C                                    |  |  |
| Accuracy: $\pm 0.2^{\circ}$ C                         |  |  |
| Repeatability: 0.1° C                                 |  |  |
|                                                       |  |  |



| Test items and parameters |                                 |                          |  |  |
|---------------------------|---------------------------------|--------------------------|--|--|
| project                   | range                           | accuracy                 |  |  |
| density                   | 0.0000~3.0000 g/cm <sup>3</sup> | ±0.001 g/cm <sup>3</sup> |  |  |
| temperature               | 0.0~50.0 ° C                    | ±0.2 °C                  |  |  |
| Ethanol (%w/w)            | 0.0~100.0 %                     | ±1.0 %                   |  |  |
| Ethanol (%v/v)            | 0.0~100.0 %                     | ±1.0 %                   |  |  |
| Proof (IP)                | 0.0~175.0 Proof                 | ±1.75 Proof              |  |  |
| Proof (US)                | 0.0~200.0 Proof                 | ±2.0 Proof               |  |  |
| Light Baumeidu            | 10~100 ° Bé                     | ±0.4 °Bé                 |  |  |
| Heavy Baume               | 0~72 ° Bé                       | ±0.1 °Bé                 |  |  |
| degree                    |                                 |                          |  |  |
| Sulfuric acid             | 0.0~100.0% (10~50° C)           | ±1.0 %                   |  |  |
| concentration             |                                 |                          |  |  |
| (%w/w)                    |                                 |                          |  |  |
| Sulfuric acid             | 0.0~100.0% (10~50° C)           | ±1.0 %                   |  |  |
| concentration             |                                 |                          |  |  |
| (%v/v)                    |                                 |                          |  |  |
| Brix (%w/w)               | 0.0~85.0% (10~50° C)            | ±0.3 %                   |  |  |
| Plato Degree              | 0.0~85.0 ° P                    | ±0.3 °P                  |  |  |
| Custom                    | Supports linear and             |                          |  |  |
| calculation (see          | quadratic polynomial            |                          |  |  |
| the calculation           | functions to calculate          |                          |  |  |
| description               | density as concentration        |                          |  |  |
| section for               |                                 |                          |  |  |
| details)                  |                                 |                          |  |  |



# II. Installation and Debugging

# 2.1 Structure and function of the instrument

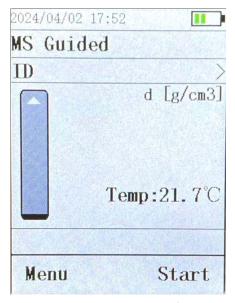




|        | <b>Introduction to Instrument Functions</b> |                                                   |  |
|--------|---------------------------------------------|---------------------------------------------------|--|
| Number | name                                        | function                                          |  |
| 1      | display screen                              | Full-color LCD display for displaying the user    |  |
|        |                                             | interface                                         |  |
| 2      | NFC card                                    | This area is the location of the card swiping     |  |
|        | swiping area                                | antenna for NFC card interaction                  |  |
| 3      | Keys                                        | Function operation buttons                        |  |
| 4      | Observation                                 | Observe whether there is liquid and bubble in     |  |
|        | window of                                   | the measuring cell                                |  |
|        | measuring cell                              |                                                   |  |
| 5      | Syringe filling                             | Fill and empty the measuring cell interface       |  |
|        | hole                                        | using a syringe                                   |  |
| 6      | Pipette                                     | Suction and discharge pipes of the measuring cell |  |
| 7      | Observation                                 | Check the sampling pump and check whether the     |  |
|        | window of                                   | sample is empty or full                           |  |
|        | sampling                                    |                                                   |  |
|        | pump                                        |                                                   |  |
| 8      | Sampling                                    | Maintenance window of sampling pump               |  |
|        | pump cover                                  |                                                   |  |
| 9      | USB-C port                                  | Interface for charging, connecting to a           |  |
|        |                                             | computer, and connecting to a USB flash drive     |  |
| 10     | QR code                                     | Used for barcode and QR code scanning             |  |
|        | scanner                                     |                                                   |  |



### 2.2 Connect the charger


The instrument uses a 5V/2A power adapter. When charging, use a USB-C cable to connect the power adapter to the charging port of the machine. After plugging in the charger, the instrument will automatically turn on and the battery icon will display the charging status.

Note: The voltage of the power adapter used for the instrument must not exceed 6V, otherwise it will cause permanent damage to the device. Users are advised not to use fast-charging power adapters.

#### III. Quick use

### 3.1. Startup and use

Long press the middle power button to turn on the machine. The default display after turning on is the test interface, as shown in Figure 3.1.1.



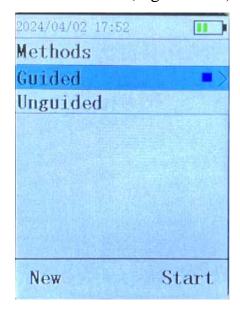

- Status bar: time, status, battery information.
- Measurement method: describe
  different measurement scenarios
- Measurement ID: Sample ID
- Measurement result: The current measurement result, including temperature, unit, result, and pump position
- Measurement status bar
- Keys

Figure 3.1.1 Measurement interface



#### 3.2. Measurement method

Click the menu, "Measurement Method" option, there are two default measurement methods: manual and guided. Guided is the guided method. When the cursor is on this item, press the start button directly, and the instrument automatically enters the measurement interface and uses this method. When you press the right button like button ">", you can enter the method details (Figure 3.2.2) for editing.



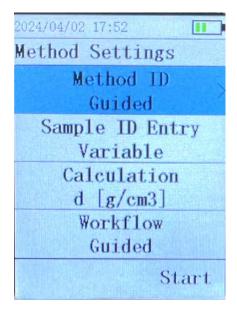
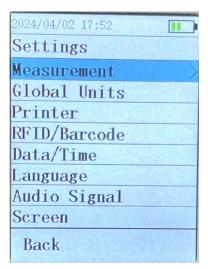




Figure 3.2.1 Measurement Method

Figure 3.2.2 Method Details

Users can create multiple different measurement methods to cope with different measurement scenarios.

## 3.3 System settings



After entering the system settings, as shown in Figure 3.3.1, the "Measurement" item is the sampling method of the instrument, and you can choose to use the built-in pump or external syringe. The "International Units" item is the density and temperature units



displayed by the machine, and the "Printer" is used to set up a wireless printer for connection.

During normal use, users can set the screen to an appropriate brightness. It is not recommended to set the screen brightness to the highest level for non-outdoor applications, as high brightness will significantly reduce the battery life of the instrument.

If the sample to be tested does not have a barcode or RFID tag, the "RFID/Barcode" card swiping and scanning functions can be disabled.

Figure 3.3.1 System Settings Current software version, "Language" supports both Chinese and English.

#### IV. Instrument maintenance

## 4.1. Cleaning of instrument pipelines

After using the instrument, it is necessary to clean it immediately. You can choose different types of cleaning agents for measuring samples. Finally, you need to use clean water to clean the machine to prevent residues from depositing on the internal pipelines.

### 4.2 Cleaning of the instrument shell

The instrument housing is made of ABS material, and it is recommended to use only soft towels and water for cleaning. When using other cleaning agents, please read the instructions carefully.



### 4.3 Instrument inspection

For instruments that have not been used for a long time or in application scenarios with high metrological requirements, a device inspection is required before use. Enter the "Device Inspection" item in the system menu, right-click to start, and use pure water to inspect the machine. When using other substances as standards, users need to set the parameters of the standard substances themselves.

## 4.4 Instrument calibration

Due to the mechanical oscillation component of the instrument detection principle, there may be some deviation in the measured value during long-term storage or use, which is affected by material deformation. At this time, users are allowed to calibrate the instrument themselves.

Instrument calibration is divided into two points: standard substance (suggested to use purified water) and empty tube (dry air) calibration. When using dry air for calibration, it is necessary to use a pump to dry the internal glass pipeline. Users can only perform standard substance calibration during use.